Горизонтальное хвостовое оперение. Переднее горизонтальное оперение Т образное оперение

Хвостовое оперение – аэродинамические профили, расположенные в хвостовой части самолета. Выглядят они как относительно небольшие «крылышки», которые традиционно устанавливаются в горизонтальной и вертикальной плоскостях и имеют название «стабилизаторы».

Именно по этому параметру хвостовое оперение и подразделяется, прежде всего – на горизонтальное и вертикальное, соответственно с плоскостями, в которых устанавливается. Классическая схема – один вертикальный и два горизонтальных стабилизатора, которые непосредственно соединены с хвостовой частью фюзеляжа. Именно такая схема наиболее широко используемая на гражданских авиалайнерах. Однако существуют и другие схемы – например, Т-образное, которое применяется на Ту-154.

В подобной схеме горизонтальное оперение прикреплено к верхней части вертикального, и если смотреть спереди или сзади самолета, оно напоминает букву «Т», от чего и получило название. Также существует схема с двумя вертикальными стабилизаторами, которые вынесены на законцовки горизонтального оперения, пример самолета с таким типом оперения – Ан-225. Также два вертикальных стабилизатора имеет большинство современных истребителей, однако установлены они на фюзеляже, поскольку те имеют форму фюзеляжа несколько более «приплюснутую» по горизонтали, по сравнению с гражданскими и грузовыми воздушными судами.

Ну и в целом, существуют десятки различных конфигураций хвостового оперений и каждая имеет свои достоинства и недостатки, о которых речь пойдет несколько ниже. Даже устанавливается оно не всегда в хвостовой части самолета, однако это касается лишь горизонтальных стабилизаторов.

Хвостовое оперение самолета Ту-154

Хвостовое оперение самолета Ан-225

Принцип работы хвостового оперения. Основные функции.

А теперь о функциях хвостового оперения, зачем же оно необходимо? Поскольку оно еще называется стабилизаторами, то можно предположить, что они что-то стабилизируют. Верно, это так. Хвостовое оперение необходимо для стабилизации и балансировки самолета в воздухе, а еще для управления самолетом по двум осям – рысканье (влево-вправо) и тангаж (вверх-вниз).

Вертикальное хвостовое оперение.

Функции вертикального оперения – стабилизация самолета. Кроме двух вышеперечисленных осей, еще существует третья – крен (вращение вокруг продольной оси самолета), так вот, при отсутствии вертикального стабилизатора, крен вызывает раскачивание самолета относительно вертикальной оси, притом раскачивание очень серьезное и абсолютно неконтролируемое. Вторая функция – управление по оси рысканья.

К задней кромке вертикального стабилизатора прикреплен отклоняемый профиль, который управляется из кабины пилотов. Это две основные функции вертикального хвостового оперения, абсолютно неважно количество, позиция и форма вертикальных стабилизаторов – эти две функции они выполняют всегда.

Виды вертикальных хвостовых оперений.

Горизонтальное хвостовое оперение.

Теперь о горизонтальном хвостовом оперении. Оно также имеет две основные функции, первую можно охарактеризовать как балансировочную. Для того чтобы понять что тут к чему, можно провести простой эксперимент. Необходимо взять какой-либо длинный предмет, например линейку и положить ее на один вытянутый палец так, чтобы она не падала и не клонилась ни назад, ни вперед, т.е. найти ее центр тяжести. Итак, теперь у линейки (фюзеляжа) есть крыло (палец), уравновесить ее вроде не сложно. Ну а теперь необходимо представить, что в линейку закачиваются тонны топлива, садятся сотни пассажиров, загружается огромное количество груза.

Естественно, все это загрузить идеально относительно центра тяжести просто невозможно, однако есть выход. Необходимо прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, после чего сдвинуть «передний» палец к заднему. В итоге получилась относительно устойчивая конструкция. Можно еще сделать по другому: поместить «задний» палец под линейку и сдвинуть «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

Более распространен именно первый тип, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция – управление по оси тангажа. Здесь все абсолютно также как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает либо уменьшает силу, которую создает горизонтальный стабилизатор благодаря своему аэродинамическому профилю. Здесь следует сделать оговорку, относительно отклоняемой задней кромки, ведь некоторые самолеты, особенно боевые, имеют полностью отклоняемые плоскости, а не только их части, это касается и вертикального оперения, однако принцип работы и функции от этого не меняются.

Виды горизонтальных хвостовых оперений.

А теперь о том, почему конструкторы отходят от классической схемы. Сейчас самолетов огромное количество и их предназначение вместе с характеристиками очень сильно отличается. И, по сути, здесь необходимо разбирать конкретный класс самолетов и даже конкретный самолет в отдельности, но чтобы понять основные принципы будет достаточно нескольких примеров.

Первый - уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, который в полете затенял бы в аэродинамическом плане единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы чрезвычайно низкой. Т-образное оперение Ту-154 также имеет свои преимущества. Поскольку оно находится даже за задней точкой фюзеляжа, по причине стреловидности вертикального стабилизатора, плечо силы там самое большое (здесь можно опять прибегнуть к линейке и двум пальцам разных рук, чем ближе задний палец к переднему, тем большое усилие на него необходимо), потому его можно сделать меньшим и не таким мощным, как при классической схеме. Однако теперь все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, из-за чего тот необходимо серьезно укреплять, а значит и утяжелять.

Кроме того, еще и дополнительно тянуть трубопроводы гидравлической системы управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, а значит менее безопасная. Что же касается истребителей, почему они используют полностью отклоняемые плоскости и парные вертикальные стабилизаторы, то основная причина - увеличение эффективности. Ведь понятно, что лишней маневренности у истребителя быть не может.

Оперение составляют несущие поверхности, предназначенные для обеспечения продольной и путевой устойчивости и управляемости самолета. Оно состоит обычно из горизонтального и вертикального оперений (рис. 3.1). Горизонтальное оперение (ГО) служит для продольной устойчивости и управляемости самолета, вертикальное оперение (ВО) - для путевой устойчивости и управляемости самолета.

Горизонтальное оперение состоит из стабилизатора и руля высоты (РВ). Стабилизатор является обычно неподвижной частью ГО, он совместно с РВ обеспечивает продольную устойчивость самолета в полете. Руль высоты - подвижная часть горизонтального оперения, предназначенная для управления самолетом относительно поперечной оси. Вертикальное оперение состоит из киля и руля направления (РН). Киль - неподвижная часть ВО - совместно с РН обеспечивает путевую и поперечную устойчивость самолета в полете. Руль направления является подвижной частью вертикального оперения, предназначенной для управления самолетом относительно вертикальной оси.

Схемы оперения различаются в основном в зависимости от взаимного расположения ГО и ВО и их расположения относительно фюзеляжа. В традиционной схеме ГО и ВО крепятся на хвостовой части фюзеляжа. Такая схема оперения наиболее выгодна в отношении массы и вибропрочности, но не всегда приемлема. Так, при верхнем расположении крыла или расположении двигателей на хвостовой части фюзеляжа применяют Т-образное оперение. В этой схеме ГО крепится на киле с целью выноса его из скошенного потока за крылом и струи газов двигателей. На некоторых самолетах с этой целью вместо Т-образного применяют V-образное оперение.

Рис.3.1. Оперение и элероны самолета:

1, 5 - элероны; 2 - триммер элеронов; 3, 4 - сервокомпенсаторы элеронов;

6, 12 -рули высоты; 7, 11 - триммеры руля высоты; 8 - руль направления;

9, 10 - триммер и пружинный сервокомпенсатор руля направления

Достаточно часто кили устанавливают на концах стабилизатора. Такое разнесенное ВО повышает эффективность и уменьшает индуктивное сопротивление ГО, поскольку кили выполняют в этом случае роль концевых шайб. Разнесенное ВО особенно выгодно для самолетов с турбовинтовыми двигателями, так как струи воздуха от воздушных винтов увеличивают эффективность ВО на малых скоростях полета. Кроме того, у разнесенного ВО центр давления ниже, чем у ВО обычной схемы, следовательно, меньше крутящий момент фюзеляжа. Недостатками Т-образного оперения и оперения с разнесенным ВО является необходимость усиления киля и стабилизатора, а следовательно, увеличения массы оперения, а также необходимость усложнения проводки управления рулями.



На самолетах типа "утка" ГО располагается впереди крыла. Такая схема ухудшает обзор из кабины экипажа, однако обеспечивает более высокие несущие свойства в сравнении с самолетами обычной схемы, поскольку уравновешивающая аэродинамическая сила на ГО направлена вверх, а не вниз.

Самолеты типа "бесхвостка" могут не иметь горизонтального оперения. В такой схеме продольная устойчивость обеспечивается применением

S-образного профиля и соответствующими очертаниями крыла в плане. Функции руля высоты выполняют элевоны, которые действуют в качестве элеронов и руля высоты. Отказ от ГО в схеме "бесхвостка" позволяет уменьшить лобовое сопротивление и массу самолета. Недостатком схемы является уменьшение несущих способностей крыла из-за необходимости применения S-образного профиля и элевонов, отклоняемых вверх в процессе продольной балансировки самолета.

Геометрические характеристики оперения - форма профиля, форма в плане, угол поперечного V - аналогичны характеристикам крыла. Кроме того, оперение характеризуется относительными площадями горизонтального и вертикального оперений, руля высоты и руля направления.

Оперение обычно имеет симметричные профили, что позволяет сохранить одинаковый характер аэродинамических нагрузок при отклонении рулей в разные стороны и обеспечить меньшее лобовое сопротивление. Для стабилизатора иногда применяется несимметричный профиль, установленный в перевернутом положении (обратной кривизны). Такой профиль создает при нулевом угле атаки ГО аэродинамическую силу, направленную вниз и уравновешивающую момент подъемной силы крыла при минимальном балансировочном сопротивлении самолета.



Профили оперения выбираются такими, чтобы срыв потока и скачки уплотнения возникали на оперение позже, чем на крыле. Этим достигается сохранение устойчивости и управляемости самолета на всех режимах полета. С этой же целью оперению придают стреловидность на 5 - 10° больше стреловидности крыла.

Относительные площади горизонтального и вертикального оперений S ГО и S ВО выражаются отношением площадей ГО и ВО к площади крыла:

S ГО = S ГO /S; S BO = S BO /S.

Относительная площадь руля высоты S B выражается отношением площади РВ S B площади ГО, а относительная площадь руля направления S H - отношением площади РН к площади ВО:

S В =S В /S ГО; S Н = S Н /S ВО

Нагрузки, действующие на оперение в полете, по характеру аналогичны нагрузкам, действующим на крыло. Массовые нагрузки от конструкции ГО и ВО невелики и в расчетах обычно не учитываются. Расчет на прочность и жесткость ведется на уравновешивающие и маневренные нагрузки, а также нагрузки при полете в неспокойном воздухе.

Уравновешивающая аэродинамическая сила на горизонтальном оперении Y ГО уравновешивает момент, создаваемый подъемной силой крыла Y относительно ЦМ самолета:

Y ГО L ГО =Ya, где L ГO - плечо горизонтального оперения, т. е. длина проекции на продольную ось самолета отрезка, соединяющего заданную точку на САХ крыла (обычно в диапазоне центровок самолета) с точкой, лежащей на 1/4 САХ горизонтального оперения.

Маневренные нагрузки возникают при резком отклонении руля и зависят от темпа его отклонения. При полете в неспокойном воздухе на ГО действуют нагрузки от порывов ветра. Эти нагрузки пропорциональны скорости потока при порыве и площади ГО.

На ВО уравновешивающая нагрузка возникает при скольжении самолета. Она достигает больших значений при отказе двигателя, находящегося на удалении от продольной оси самолета.

При отклонении рулей стабилизатор и киль дополнительно нагружаются сосредоточенными силами с рулей через узлы подвески. Направление этих сил зависит от направления отклонения рулей.

Нагрузки на оперение, как и на крыле, определяются для ряда расчетных случаев.

К рулевым поверхностям, кроме РВ и РН, относятся элероны - подвижные части крыла, отклоняемые одновременно в противоположные стороны (вверх и вниз), предназначенные для управления самолетом относительно его продольной оси.

Под устойчивостью понимают способность ВС самостоятельно, без участия пилота, сохранять заданное состояние движения и возвращаться к исходному режиму полета после непроизвольного отклонения, вызванного действием внешних возмущений.

Под управляемостью ВС понимают его способность изменять режим полета при отклонении рулевых поверхностей. Устойчивость и управляемость относятся к наиболее важным свойствам ВС, от них зависят безопасность полета, простота и точность пилотирования.

Посредством рулей и элеронов обеспечивается балансировка самолета, т. е. уравновешивание действующих на него сил и моментов. Достигается балансировка отклонением рулевых поверхностей на определенный, так называемый балансировочный угол.

В нормальных условиях полета пилот (автопилот) периодически балансирует самолет рулем высоты в связи с изменением центровки, вызванной выработкой топлива или перемещением пассажиров и грузов. В случае отказа двигателя, неравномерной выработки топлива из левой и правой половин крыла и в некоторых других случаях балансировка самолета достигается отклонением руля направления и элеронов.

Балансировочное положение рулевых поверхностей желательно иметь близким к их нейтральному положению. В противном случае существенно увеличивается лобовое сопротивление самолета. Так, балансировочные потери от отклонения руля высоты могут сократить дальность полета самолета более чем на 10%.

Таким образом, рули и элероны выполняют две функции: обеспечивают равновесие действующих на самолет сил и моментов при полете в установившемся режиме и служат для управления, т.е. преднамеренного нарушения этого равновесия с целью изменения режима и траектории полета.

На вертолетах функции оперения выполняют несущие и рулевые винты, но часто в качестве вспомогательных устройств применяется оперение самолетного типа.

Двухвинтовой вертолет соосной схемы снабжается килем и рулем направления, которые улучшают путевую устойчивость и управляемость вертолета; РН, кроме того, повышает путевую управляемость на режиме самовращения несущего винта.

На одновинтовых вертолетах роль киля выполняет концевая балка, сечениям которой придается форма несимметричного профиля. Такая килевая балка повышает путевую устойчивость вертолета и разгружает в горизонтальном полете рулевой винт. Руль направления на одновинтовых вертолетах не применяется, поскольку достаточная путевая управляемость достигается посредством рулевого винта.

Горизонтальное оперение состоит обычно из управляемого стабилизатора, предназначенного для повышения продольной устойчивости вертолета. Стабилизаторы могут предусматриваться на вертолетах различных схем. Управление стабилизатором осуществляется через систему управления несущим винтом. Некоторые вертолеты имеют неуправляемые стабилизаторы.

Конструкция оперения вертолетов аналогична конструкции оперения самолетов. Поскольку вертолеты имеют относительно небольшие скорости полета, обшивка оперения может быть полотняной.

0

Конструкция основных частей оперения - стабилизатора и киля - обычно подобна. Одинаковы по конструкции также рули высоты и рули направления. На крупных самолетах стабилизаторы выполняются, как правило, разъемными. Киль может быть изготовлен за одно целое с фюзеляжем или в виде отдельной части. Каркас оперения современных самолетов, как правило, выполняется металлическим. Обшивка киля и стабилизатора обычно жесткая (дюралюминиевая). Рули самолетов малых дозвуковых скоростей обшиваются полотном, что уменьшает их вес и упрощает конструкцию. На самолетах больших скоростей обшивка рулей так же, как и каркас, металлическая.

Киль и стабилизатор. На небольших самолетах киль и стабилизатор делают чаще всего двухлонжеронными. На тяжелых самолетах киль и стабилизатор обычно моноблочной конструкции с работающей обшивкой (рис. 59).

Основные элементы силового набора (лонжероны, стенки, стрингеры, нервюры) конструктивно выполняются так же, как у крыла, и выполняют те же функции, т. е. изгиб воспринимается поясами лонжеронов, стрингерами и частично обшивкой; поперечная сила воспринимается стенками лонжеронов; кручение - замкнутым контуром; обшивка - стенки лонжеронов. Стабилизатор и киль крепятся к фюзеляжу при помощи узлов на лонжеронах и шпангоутах. Для крепления (подвески) рулей стабилизатор и киль имеют специальные кронштейны с универсальными и одноосевыми шарнирами. На рис. 60 показан типовой узел подвески руля.

Рули и элероны (рули крена).

Рули и элероны, как правило, выполняются однолонжеронными с набором стрингеров и нервюр.

Для увеличения жесткости передней части руля иногда устанавливается стенка (вспомогательный лонжерон).

В современном самолетостроении используют три характерных типа рулей для самолетов с различной скоростью полета: руль с трубчатым лонжероном, руль с жестким носком и руль с жесткой обшивкой для самолетов больших скоростей. В руле любого типа набор нервюр собирает воздушную нагрузку с поверхности руля и передает ее на лонжерон и контур кручения, а также на жесткую заднюю кромку.

В первой схеме нервюры руля всю собранную ими нагрузку передают только на лонжерон, а поскольку он трубчатый, то может успешно работать и на изгиб, и на кручение.

Во второй схеме силы с нервюр передаются на стенку балочного лонжерона, загружая его поперечным изгибом, а момент с нервюр передается на контур, образованный стенкой лонжерона с жестким носком. Этот контур и работает на кручение. В этой схеме функции распределяются следующим образом: поперечный изгиб воспринимается балочным лонжероном, а кручение - контуром силового носка.

В третьей схеме (рис. 61) подобное же распределение функций, но крутящий момент передается здесь на весь контур обшивки, а не только на носок.

В соответствии с той или иной схемой передачи сил осуществлены силовые связи элементов руля между собой. Для рулей первой схемы нервюры связаны только с лонжероном заклепками по его окружности.

Рули второй и третьей схем имеют связь нервюр со стенками лонжеронов и контуром кручения. Эта связь обеспечивается заклепками, болтами и иногда клеем.

В целях лучшего использования обшивки для восприятия изгибающего момента и сохранения формы профиля применяют рули с пенопластовым или сотовым заполнителем. Они обладают высокой жесткостью при малом весе.


Триммеры (рис. 62) представляют собой вспомогательную рулевую поверхность, устанавливаемую на задней части основного руля. С помощью триммеров обеспечивается балансировка самолета относительно всех его осей при изменении центровки и режима полета. Отклонение триммера производится независимо от отклонения руля обычно при помощи специальных необратимых самотормозящихся электромеханизмов, включаемых в нужный момент пилотом двусторонним нажимным переключателем. Триммер руля высоты, как правило, управляется при помощи тросового механического устройства. Сущность работы триммера можно пояснить следующим примером. При отказе одного из двигателей самолета появляется разворачивающий момент, противодействие которому может быть создано отклонением руля поворота. Длительный полет самолета с отклоненным рулем утомителен для пилота. Отклоняя триммер в сторону, противоположную отклонению руля, нагрузку, передающуюся на ноги пилота, можно уменьшить до сколько угодно малой величины. Компенсирующий момент от триммера, противодействующий шарнирному моменту, возникает вследствие большого плеча силы, приложенной к триммеру, хотя сама сила и невелика. Величину шарнирного момента при этом можно записать в следующем виде.

8.1. Обоснование аэродинамической схемы самолёта.

Современный самолёт представляет собой сложную техническую систему, элементы которой, каждый в отдельности и все в совокупности, должны иметь максимальную надёжность. Самолёт в целом должен отвечать заданным требованиям и обладать высокой эффективностью при соответствующем техническом уровне.

При разработке проектов самолётов нового поколения, которые войдут в эксплуатацию в начале 2000-х годов, большое значение придаётся достижению высокой технико-экономической эффективности. Эти самолёты должны не только обладать хорошими её показателями на момент выхода в эксплуатацию, но и располагать потенциальной возможностью модификации для систематического повышения эффективности на протяжении всего периода серийного производства. Это необходимо для того, чтобы с минимальными затратами обеспечить реализацию новых требований и достижений технического прогресса.

При рассмотрении схемы пассажирского самолёта местных авиалиний целесообразно изучить все ранее созданные в этом классе самолёты.

Развитие пассажирской авиации активно началось после Второй Мировой войны. С тех пор схема самолётов этого класса, постепенно претерпевая изменения пришла к наиболее оптимальной на сегодняшний день. В большинстве случаев это самолет, выполненный по нормальной аэродинамической схеме, моноплан. Двигатели обычно расположены под крылом (ТВД), под крылом на пилонах или на крыле (ТРД). Хвостовое оперение выполнено скорее по Т-образной схеме, иногда по нормальной. Сечение фюзеляжа состоит из дуг окружностей. Шасси выполнено по схеме с носовым колесом, основные стойки часто многоколёсные и многоопорные, убирающиеся либо в удлинённые мотогондолы турбовинтовых двигателей (для самолётов весом примерно до 20 тонн), либо в наплывы на фюзеляжа.

Типичная компоновка фюзеляжа - кабина пилотов в носовой части, длинная пассажирская кабина.

Отклонение от этой устоявшейся компоновочной схемы может быть вызвано только лишь какими-то особенными требованиями, предъявляемыми к самолёту. В остальных же случаях при разработке пассажирского самолёта конструкторы стараются придерживаться именно этой схемы, поскольку она является практически оптимальной. Ниже приведено обоснование применения данной схемы.

Использование нормальной аэродинамической схемы для самолётов транспортной авиации обусловлено в первую очередь её достоинствами:

Хорошая продольная и путевая устойчивость. Благодаря этому свойству нормальная схема сильно выигрывает у схем «утка» и «бесхвостка».

С другой стороны данная схема обладает достаточной для неманевренного самолёта управляемостью. Вследствие наличия этих свойств у нормальной аэродинамической схемы, самолёт прост в управлении, что даёт возможность эксплуатации его лётчикам любой квалификации. Тем не менее, нормальной схеме присущи следующие недостатки:

Большие потери на балансировку, что при прочих равных условиях сильно снижает качество самолёта.

Полезная массовая отдача у нормальной схемы ниже, поскольку масса конструкции у неё обычно больше (хотя бы потому, что у «бесхвостки» горизонтальное оперение отсутствует вовсе, а у «утки оно создаёт положительную подъёмную силу, работая как крыло и следовательно, разгружая крыло, что даёт возможность уменьшить площадь последнего).

Влияние скоса потока за крылом на горизонтальное оперение хоть и не столь критично, как влияние ПГО у «утки» но, тем не менее, с этим приходится считаться, разнося крыло и горизонтальное оперение по высоте. Так же следует учесть тот факт, что самолетам, выполненным по схемам «утка» и «бесхвостка» при взлёте и посадке требуются большие углы атаки , что делает конструктивно практически невозможным использование стреловидных крыльев большого и среднего удлинения, так как применение таких крыльев и больших углов атаки связано с очень большой высотой шасси. Из-за этого в схемах «утка» и «бесхвостка» используются только крылья малого удлинения треугольной, готической, оживальной или серповидной формы в плане. Вследствие малого удлинения такие крылья имеют низкое аэродинамическое качество на дозвуковых режимах полёта. Эти соображения определяют целесообразность использования схем «утка» и «бесхвостка» на самолётах, у которых основным режимом полёта является полёт на сверхзвуковой скорости.

Сравнивая все достоинства и недостатки трёх аэродинамических схем, приходим к заключению о целесообразности использования на дозвуковом пассажирском самолёте классической аэродинамической схемы.

8.2. Расположение крыла относительно фюзеляжа.

Для пассажирских самолётов выбор схемы крыла относительно фюзеляжа связан в первую очередь с компоновочными соображениями. Потребность в свободных объёмах внутри фюзеляжа не позволяет использовать схему среднеплана, т. к. с одной стороны нельзя пропустить центроплан крыла сквозь фюзеляж, а с другой стороны использование крыла без центроплана, со стыковкой консолей к силовому кольцевому шпангоуту, невыгодно в весовом отношении.

В отличии от среднеплана схемы высокоплан и низкоплан не мешают созданию единой грузовой кабины. При выборе между ними предпочтение отдаётся высокопланной схеме, поскольку проектируемый самолёт будет использоваться на аэродромах разного класса, в том числе и на грунтовых ВПП, где отсутствуют подъездные трапы. Она позволяет максимально уменьшить высоту пола над уровнем земли, что значительно упрощает и облегчает посадку пассажиров и погрузку багажа через входную дверь-трап.

С аэродинамической точки зрения высокоплан выгоден тем, что позволяет получать на крыле распределение циркуляции близкой к эллиптической (при условно одинаковой форме крыла в плане) без провала в районе фюзеляжа, как у схем низкоплана и среднеплана. При этом то, что высокоплан обладает сопротивлением интерференции хотя и большим, чем у среднеплана, но меньше чем у низкоплана, позволяет получать высокое качество самолёта, построенного по такой схеме. При низком расположении крыла сопротивление (при скоростях с М<0,7) больше, чем при среднем и высоком расположении. Ниже приведены поляры для трёх схем расположения крыла на фюзеляже, из которых видно, что
(при
) у низкоплана больше, чем у среднеплана и высокоплана (Рис. 8.2.1.).

Схема высокоплан обладает следующими компоновочными и конструктивными недостатками:

Шасси невозможно разместить на крыле, либо (на небольших самолётах) основные опоры шасси получаются громоздкими и тяжёлыми. В этом случае шасси размещается, как правило, на фюзеляже, нагружая его большими сосредоточенными силами.

При аварийной посадке крыло (особенно если на нём установлены двигатели) стремится раздавить фюзеляж и находящуюся в нем пассажирскую кабину. Для устранения этой проблемы приходиться усиливать конструкцию фюзеляжа в районе крыла и значительно утяжелять его.

При аварийной посадке на воду фюзеляж уходит под поверхность воды, затрудняя тем самым аварийную эвакуацию пассажиров и экипажа.

8.3. Схема оперения.

Для пассажирских самолётов конкурирующими являются две схемы оперения: нормальная и Т-образная.

Мощная спутная струя от воздушного винта неблагоприятно влияет на обычное низко расположенное горизонтальное хвостовое оперение и может ухудшить устойчивость самолета на некоторых режимах полета. Высоко расположенное горизонтальное оперение существенно повышает устойчивость самолета, так как оно выходит за пределы зоны влияния спутной струи. При этом эффективность киля также повышается. Обычный киль эквивалентной геометрии должен иметь площадь на 10% больше. Поскольку высоко расположенное горизонтальное оперение имеет большее горизонтальное плечо из-за скоса киля назад, для создания необходимого продольного момента требуется усилие на ручке, вдвое меньшее, чем при обычном горизонтальном оперении. Кроме того, Т-образное хвостовое оперение обеспечивает более высокий уровень комфорта для пассажиров, так как оно уменьшает вибрацию конструкции от воздействия спутной струи от воздушного винта. Вес обычного и Т-образного оперений примерно одинаков.

Применение Т-образного хвостового оперения увеличивает стоимость самолета менее чем на 5 % за счет увеличения затрат на разработку и производственную оснастку. Однако преимущества этого оперения оправдывают его использование.

Среди прочих достоинств Т-образного оперения являются:

Горизонтальное оперение представляет собой «концевую шайбу» для вертикального оперения, что повышает эффективное удлинение киля. Это позволяет уменьшить площадь вертикального оперения и этим облегчить конструкцию.

Горизонтальное оперение отводится от зоны воздействия на его конструкцию звуковых волн, которые могут создать опасность усталостного разрушения. Срок службы горизонтального оперения при этом увеличивается.

8.4. Выбор количества двигателей и их размещения.

Необходимое число двигателей для силовой установки самолёта зависит от ряда факторов, обусловленных как назначением самолёта, так и его основными параметрами и лётными характеристиками.

Основными критериями при выборе числа двигателей на самолёте являются:

Самолёт должен обладать необходимой стартовой тяговооружённостью;

Самолёт должен обладать достаточной надёжностью и экономичностью;

Эффективная тяга силовой установки должна быть возможно большей;

Относительная стоимость двигателей должна быть возможно меньшей;

При формальном подходе обеспечить нужную величину стартовой тяговооружённости проектируемого самолёта можно каким угодно числом двигателей (в зависимости от стартовой тяги одного двигателя). Поэтому при решении данного вопроса необходимо ещё и учитывать специфику назначения самолёта и требования, предъявляемые к его компоновке и силовой установке. Помощь при выборе числа двигателей может оказать изучение самолётов аналогичного класса уже использующихся на авиалиниях.

При развитии пассажирских самолётов местных авиалиний конструкторы пришли со временем к оптимальному количеству числа двигателей на самолётах данного класса - два двигателя. Отказ от использования одного двигателя объясняется тем, что появляются большие сложности с его компоновкой, а также один двигатель не удовлетворяет безопасности полётов. Использование трёх и более двигателей неоправданно утяжелит и усложнит конструкцию, следствием этого явится увеличение стоимости самолёта в целом и снижение его боеготовности.

При выборе места установки двигателей было рассмотрено несколько вариантов их размещения. В результате анализа выбор был остановлен на схеме крепления двигателей под крылом. Достоинствами этой схемы являются:

Крыло разгружается в полёте двигателями, что позволяет уменьшить его массу на 10... 15%

При такой схеме компоновки СУ увеличивается критическая скорость флаттера - двигатели являются противофлаттерными балансирами, сдвигая ЦМ сечений крыла вперед.

Возможно надёжное изолирование крыла от двигателей при помощи противопожарных перегородок.

Обдув механизации крыла струёй от винтов увеличивает её эффективность.

К недостаткам схемы можно отнести:

Большие разворачивающие моменты при отказе в полёте одного двигателя. - Далеко расположенные от земли двигатели тяжелее обслуживать.

На сегодняшний день на неманевренных дозвуковых самолётах нашли применение два типа двигателей - ТВД и ТРДД. Решающее значение при выборе типа двигателя имеет скорость крейсерского полёта. ТВД выгодно использовать на скоростях полёта, соответствующих М = 0,45...0,7 (Рис. 8.4.2.). В этом диапазоне скоростей он гораздо экономичнее ТРДД (удельный расход топлива меньше в 1,5 раза). Использование ТВД на скоростях, соответствующих М = 0,7...0,9 невыгодно, т. к. он имеет недостаточную удельную мощность и повышенный уровень шума и вибраций на самолёте.

Принимая во внимание все вышеперечисленные факты, и исходя из исходных данных на проектируемый самолёт, выбор для СУ делаем в пользу ТВД.

8.5. Итоги проведённого анализа.

Проведённый выше анализ показывает, что для пассажирского ближнемагистральнолго самолёта применительны две основные схемы (Рис. 8.5.1.).

Схема 1: Низкоплан с низкорасположенным Г.О., двигателями в крыле, и шасси расположенными в мотогондолах.

Схема 2: Высокоплан с Т-образным оперением, двигателями под крылом и шасси расположенными в гондолах на фюзеляже.

С точки зрения эксплуатации, аэродинамики и экономики наиболее выгодна вторая схема для данного типа самолёта (Таблица 8.5.1.).

Таблица 8.5.1.

Параметры

По расположению двигателей.

При расположении двигателя на крыле лопасти винта находятся близко к поверхности земли, что непозволяет эксплуатацию на грунтовых ВПП.

Расположение двигателя под крылом обеспечивает необходимое расстояние лопастей винта относительно поверхности земли.

По расположению двигателей.

Для обслуживания двигателя приходится залезать на крыло.

Для обслуживания двигателя необходимо пользоваться стремянкой.

По расположению шасси.

Из-за большой высоты стойка основной опоры шасси имеет большую массу.

Меньшая высота основной стойки шасси позволяет уменьшить её массу.

По расположению пола.

Высоко расположенный пол затрудняет посадку и высадку пассажиров без применения подъездных трапов.

Низко расположенный пол и дверь-трап упрощают посадку пассажиров и погрузку ручной клади.

По типу оперения.

Габаритные размеры оперения затрудняет размещение самолёта в ангарах, но низко расположенное ГО легче в обслуживании.

В связи с меньшими габаритами ВО, не вызывает проблем с размещением в ангарах, но Т-образный стабилизатор труднее в обслуживать.

8.6. Статистика раннее созданных самолётов данного класса.

Оперение самолета 1. Назначение и состав оперения. Требования предъявляемые к оперению. 2. Форма и расположение оперения. 3. Нагрузки действующие на оперение. 4. Конструкция оперения.

Назначение оперения. Оперением самолета называются несущие поверхности самолета, предназначенные для обеспечения продольной (отн оси OZ) и путевой (отн оси OY) балансировки, устойчивости и управляемости самолета. Балансировкой самолета называется уравновешивание моментов всех сил, действующих на самолет, относительно его центра тяжести. Устойчивость есть способность самолета возвращаться к заданному режиму полета после прекращения действия сил, вызвавших отклонение самолета от этого режима. Управляемостью самолета называется его способность отвечать на отклонения рулей соответствующими перемещениями в пространстве или, как обычно выражаются летчики «ходить за ручкой» .

Назначение и состав оперения. Самолет нормальной (классической) схемы и схемы «утка» имеет горизонтальное и вертикальное оперение. горизонтальное оперение предназначено для обеспечения продольной (отн оси OZ) балансировки, устойчивости и управляемости самолета. вертикальное оперение предназначено для обеспечения путевой (отн оси OY) балансировки, устойчивости и управляемости самолета. Относительная масса оперения m оп. / m кр. = 0, 015. 0, 025

Горизонтальное оперение 8 –форкиль, 7 - килевой гребень. У самолетов дозвуковых ГО обычно состоит из неподвижного или ограниченно подвижного стабилизатора и подвижного руля высоты На самолетах со сверхзвуковой скоростью полета из-за недостаточной эффективности РВ при полете на сверхзвуковой скорости применяют цельноповоротное ВО (ЦПГО) без РВ.

На тяжелых самолетах поворотом стабилизатора обычно осуществляют балансировку ЛА и снимают усилия с рычагов управления, а РВ используют для управления продольным движением.

Причина перехода на цельноповоротное горизонтальное оперение При превышении в полете скорости звука возрастает статическая устойчивость и соответственно ухудшается управляемость самолета из -за смещения назад фокуса. Парировать это явление и обеспечить высокие маневренные возможности сверхзвуковых самолетов можно, повышая эффективность их органов управления относительно оси Z. Однако при полете со сверхзвуковой скоростью (М> 1) эффективность РВ снижается, так как из-за скачка уплотнения на носке руля (рис. 5. 2, б) изменения давления при отклонении руля не распространяются на все ГО, как это имеет место при полете на дозвуковой скорости (см. рис. 5. 2, а). Переход на ЦПГО позволяет резко увеличить эффективность ГО, особенно на сверхзвуковых скоростях.

Дифференциально управляемый стабилизатор цельноповоротное горизонтальное оперение может использоваться для поперечного управления самолета, т. е. его консоли отклоняются совместно при продольном управлении и дифференциально при управлении креном.

ПГО На самолетах построенных по схеме «утка» или триплан используется для управления относительно оси oz используют ПГО, состоящее из дестабилизатора и подвижной части - руля высоты, либо цельноповоротное ПГО.

Вертикальное оперение Вертикальное оперение предназначено для обеспечения путевой (отн оси OY) балансировки, устойчивости и управляемости самолета. Обычно оно состоит из неподвижного киля и подвижного руля направления. На самолетах, совершающих полеты на больших сверхзвуковых скоростях и больших высотах, применяют цельноповоротное вертикальное оперение.

Вертикальное оперение Из-за снижения эффективности РН при сверхзвуковом полете применяется цельноповоротное ВО. Для повышения эффективности ВО применяются подфюзеляжные кили 7, включающие в работу фюзеляж в районе ВО, что снижает влияние на путевую устойчивость затенения ВО крылом и фюзеляжем на больших углах атаки. Повышает эффективность ВО и форкиль 8.

Двухкилевое вертикальное оперение Для обеспечения необходимой степени путевой устойчивости и управляемости сверхзвукового самолета используют двухкилевое вертикальное оперение

Для обеспечения необходимой степени путевой устойчивости и управляемости дозвукового самолета, уменьшения влияния вертикального оперения на характеристики поперечной устойчивости, уменьшения крутящего момента фюзеляжа, уменьшения массы оперения используют двух и трехкилевые схемы. При расположении ВО на концах стабилизатора повышается эффективность ГО (ВО работает как концевые шайбы).

ВО на крыле Beech 2000 Starship I У самолетов без ГО или выполненных по схеме «утка» ВО может устанавливаться на крыле, что уменьшает затенение оперения крылом и фюзеляжем даже на очень больших углах атаки.

V - образное оперение V – образное оперение представляет собой аэродинамические поверхности установленные под углом 45 -60 град. К плоскости симметрии ЛА. Такое оперение одновременно выполняет функции и ГО и ВО.

ЭФФЕКТИВНОСТЬ ОРГАНОВ УIIРАВЛЕНИЯ ЭФФЕКТИВНОСТЬ ОРГАНОВ УIIРАВЛЕНИЯ способность органов управления создавать при своём отклонении управляющий момент относительно соответствующей оси координат. Э. о. у. равны приращениям коэфициентов моментов при полном отклонении органов управления от их нейтрального положения Ат zxy - соответственно макс. приращения коэф. моментов тангажа, крена и рыскания. Часто Э. о. у. характеризуют коэффициентами эффективности органов управления, равными частной производной коэф. момента данного органа по углу его отклонения dm zxy / d дельта в. э. н. Э. о. у и коэффициенты являются одними из основных параметров, определяющих характеристики управляемости ЛА

Эффективность оперения Эффективность оперения (помимо скорости и высоты полета) зависит также от площади оперения, его внешних форм, расположения на самолете, от жесткости самого оперения и частей, к которым оно крепится. Компоновка оперения на самолете и конструктивные параметры должны обеспечивать достаточную эффективность его на всех режимах полета, включая взлет и посадку.

Требования предъявляемые к оперению. Обеспечение необходимых характеристик устойчивости и управляемости самолета на всех режимах полета, Минимальная масса оперения, Как можно меньшие потери аэродинамического качества на балансировку самолета, Недопущение опасных колебаний оперения типа флаттер или бафтинг.

Форма и расположение оперения. В зоне спутной струи, особенно за крылом, имеют место большие скосы потока и значительно меньшие скорости потока, что уменьшает эффективность оперения в такой зоне. ГО выносят вверх или вниз, либо вперед – схема «утка» , либо применением схемы «летающее крыло» или «бесхвостка» вообще без ГО.

Т – образное оперение При этой схеме увеличивается плечо L го от ЦМ самолета до ЦД ГО, что позволяет уменьшить S го и его массу m го. ГО аналогично концевой шайбе для ВО, увеличивая его эффективное удлинение.

ГО впереди крыла Saab SK 37 E Viggen Схема позволяет получить выигрыш за счет уменьшения площади крыла и его массы, т. к. при балансировке Y кр. складывается с Y го. Недостатки: затенение крыла; большие потребные Суа на Взл. Пос. режимах (при выпущенной механизации крыла); большие потери на балансировку (из-за меньшего плеча L го.

Трипланная схема Чтобы компенсировать недостатки переднего ГО, на Взл. Пос. режимах, применяют трипланную схему. Хвостовое ГО позволяет создавать необходимые кабрирующие моменты на Взл. Пос. режимах, парирующие пикирующие моменты от механизации крыла. Переднее ГО делают «плавающим» на дозвуковых скоростях и управляемым на сверхзвуке.

Чтобы ГО не затеняло ВО, его располагают позади ВО. Разнесенное ВО предпочтительнее единого ВО: нет его затенения фюзеляжем на больших углах атаки; крутящий момент меньше чем на одном ВО; улучшается поперечная устойчивость самолета.

Разнесенное ВО Расположение ВО на концах ГО увеличивает эффективное удлинение ГО. Эффективность разнесенного ВО при обдуве его струей от винтов двигателей возрастает. Разнесенное ВО не мешает обзору и стрельбе в заднюю полусферу.

Нагрузки действующие на оперение По характеру работы оперение является такой же несущей поверхностью как и крыло. На оперение в полете действуют нагрузки от аэродинамических и массовых сил. Нагрузки от массовых сил сравнительно невелики и в расчете на прочность ими пренебрегают. Нагрузки от аэродинамических сил разделяют на уравновешивающие и маневренные.

Уравновешивающие нагрузки Уравновешивающие нагрузки, необходимые для балансировки самолета на заданном режиме полета, определяются для горизонтального оперения из условия равенства моментов относительно поперечной оси OZ. В горизонтальном полете равнодействующая сил ГО Pэур. г. о. , приложенная в центре давления оперения, должна создавать относительно центра тяжести самолета момент, равный по величине и обратный моменту крыла. При расчете ГО на прочность выбирается наибольшая Pэур. г. о. , определенная для всех расчетных случаев крыла. Pэур. г. о. может быть определена из.